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Abstract
We suggest that ferroelectric relaxor glasses represent an important class of
materials in which intrinsic spatial heterogeneity and multiscale dynamics
can arise from the formation of local modes due to inherent nonlinearity
in the polarizable medium. Specifically, the phenomenology of relaxor
ferroelectrics in terms of the spherical random bond–random field (Blinc et al
1999 Phys. Rev. Lett. 83 424) model is explained microscopically by the
formation of discrete breathers embedded in a soft but silent medium, which
form in-gap local modes (IGLM) where charge and lattice are intrinsically
coupled. Complete mode softening is inhibited by the IGLM and soft elasticity
a prerequisite for their existence.

(Some figures in this article are in colour only in the electronic version)

Two fascinating but poorly understood current themes in condensed matter are: (i) the
possibility of intrinsic heterogeneity in complex electronic materials [2, 3]; and (ii) the
localization of energy in nonlinear systems in the form of multi-vibrational bound states
(‘intrinsic local modes’ [4, 5]). We propose here that these two phenomena can come together
in wide classes of ferroelectric materials, where the coupled electron–ion polarizability
provides a self-consistent source of strong nonlinearity. Ferroelectric properties are very
broadly prevalent in materials from solid state to biology and enjoy major technological
applications and potentials. The technologically most important class of ferroelectrics is
relaxors [6, 7]. These typically represent solid solutions of perovskites ABO3, i.e. ABB′O3

or AA′BO3 or mixtures of both, where one of the pure compounds, e.g. ABO3, becomes
ferroelectric at a phase transition temperature Tc. The characteristics of relaxors are a strong
frequency dependence of the dielectric maximum, the absence of macroscopic polarization
and the occurrence of a diffuse phase transition (DFT). Since experimental evidence for
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short range chemical order on a nanoscale level has been observed [2, 8], it has been
proposed that the scale of inhomogeneity determines the relaxor state [2], and dynamical
fluctuations of local dipole moments take place within the chemical clusters [9]. Even
though it has been recognized early on that relaxors are related to dipolar glasses, the
nature of the DFT has remained controversial [9–12]. A consistent phenomenological
description has been given recently [1] by postulating that relaxor dynamics can be
related to an Edwards–Anderson order parameter qEA corresponding to a dimensionless
cluster dipole moment. Due to the variations in the cluster dipole moment orientations a
spherical constraint has been postulated for them with infinitely ranged, randomly frustrated
interactions [13, 14]. The model corresponds then to a spherical random bond–random field
(SRBRF) with distinctly different properties as compared to dipolar [13] or quadrupolar
glasses [15, 16].

Here new, however related, ideas on the origin of relaxor behaviour are presented,
but on a microscopic level, where the random distribution of polar ABO3 clusters in a
soft but silent AB′O3 matrix is treated as impurity or defect induced heterogeneity. The
inherent anharmonicity of relaxors (from the strong ion–charge coupling) then admits for
the formation of intrinsic local modes (ILMs) [4] with discrete breather type character [17]
whose length scale is determined by the number of defect ions, i.e. the chemical cluster
size. The interaction between these objects is possible through phase fluctuations and is
strongly dependent on their density in the soft host lattice [17]. In contrast to various
previous ideas on the existence and stability regime of ILMs, we use here a much richer
model, since electronic hybridization effects are explicitly incorporated. These have been
shown to be of vital importance to perovskite ferroelectrics, since the transition metal d–
oxygen ion p states interact through phonons, and small charge transfers between them
trigger the soft mode behaviour of displacive type ferroeletric ABO3 systems [18–21].
The p–d hybridization effects are effectively incorporated in a nonlinear shell model
representation where a local anharmonic potential in the relative core shell displacement
coordinate is included, which defines an integrated dipole moment [18, 19, 22]. Using
a lowest two mode diatomic approximation where mass m1 represents the polarizable
cluster unit BO3, while m2 is given by the rigid A ion, the Hamiltonian of our system
reads [19]

H = 1
2

∑
i=1,2,n

[mi u̇
2
in + mvi v̇

2
in] + 1

2

∑
n

[ f ′(u1n − u1n+1)
2 + f (u2n − v1n)

2

+ f (u2n−1 − v1n)
2] +

∑
n

[
1

2
g2(v1n − u1n)

2 +
1

r
gr (v1n − u1n)

r

]
. (1)

Here uin are the displacements of ions i = 1, 2 with mass mi , v1n is the shell displacement
of ion 1, f ′ corresponds to the next nearest neighbour core–core coupling between ions 1,
f is the nearest neighbour coupling between shell 1 and ion 2, g2 is the harmonic coupling
between shell 1 and ion 1, and gr is the anharmonic coupling between shell 1 and ion 1 with
degree r of anharmonicity. It is important to note that the elastic properties of the system
are explicitly included through the core–core coupling f ′ which defines the dispersion of
the acoustic mode. Introducing the polarizability coordinate w1n = v1n − u1n and treating
v1n adiabatically, the following ansatz for the time periodic displacement coordinates is
used [4, 5]:

u1n(t) = Aξ1n cos(ωt)

u2n(t) = Bξ2n cos(ωt)

w1n(t) = Cη1n cos(ωt),

(2)
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Figure 1. Displacement magnitude and pattern of the considered IGLM at lattice sites around the
polar defect at site n = 0.

where A, B, C are amplitudes and ξ , η displacements. The equations of motion are given
by

−m1ω
2ξ1n A cos(ωt) = f ′ A(ξ1n+1 + ξ1n−1 − 2ξ1n) cos(ωt) + g2Cη1n cos(ωt)

+ gr Cr−1ηr−1
1n [cos(ωt)]r−1

−m2ω
2ξ2n B cos(ωt) = f C(η1n+1 + η1n) cos(ωt) + f A(ξ1n+1 + ξ1n) cos(ωt)

− 2 f ξ2n cos(ωt)
0 = −g2Cη1n cos(ωt) − grCr−1ηr−1

1n [cos(ωt)]r−1 − 2 f Cη1n cos(ωt) − 2 f Aξ1n cos(ωt)

+ f B(ξ2n−1 + ξ2n) cos(ωt).

(3)

In the following we consider only the so-called worst case r = 4 [5], which is
relevant to ferroelectrics. By expanding the cubic term in cos(ωt) [4, 5] and making
use of the adiabatic condition, the coupled set of equations to be solved is now given
by

−m1ω
2ξ1n A = f ′ A(ξ1n+1 + ξ1n−1 − 2ξ1n) + g2Cη1n + 3

4 g4C3η3
1n

m2ω
2{(g2 + 3

4 g4η
2
1nC2)η1nC + 2 f m2ω

2[Cη1n + Aξ1n]}
= − f 2C[η1n+1 + η1n−1 − 2η1n] − f 2 A[ξ1n+1 + ξ1n−1 − 2ξ1n]

+ 2 f (g2Cη1n + 3
4 g4η

3
1nC3).

(4)

Since the polarizability coordinate w = v − u has been introduced, solutions with v = u
lead to the trivial case of harmonic behaviour and are not considered. Interesting solutions
which are of relevance to relaxors are obtained by the ansatz v = −u, by means of which
w = −2u. Here we concentrate on odd parity solutions and consider the general displacement
pattern shown in figure 1. The site labelling refers to the polarizable BO3 units, where the
vector length is a measure of the local polarization, and the rigid A ions lying in between have
been omitted for simplicity. Their displacements have to be determined through the coupled
equations. At sites 0, 1, 2, . . . , nc the displacements are ξ0, ξ1, ξ2. . . . . . . , η0, η1, η2, . . . etc,
and zero at n = nc. In order to compensate for the electric field induced by the polar impurity
at n = 0, reversed dipole moments are created at the neighbouring sites of the impurity and
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Figure 2. Frequency dependence of the dielectric response (in arbitrary units) for a cluster of size
nc = 3.

the corresponding lengths of the induced dipoles ξn, ηn are −1/2 of the preceding ones, i.e.

ξ1 = −
(

ξ0 − 1

2

)
, ξ2 = −

(
ξ1 − 1

2

)
= ξ0 − 1, . . . , ξn = ξ0 − n

2
:

n ≡ even; ξn = −
(

ξ0 − n

2

)
; n ≡ odd.

Here it is inferred that at n = 0 the displacement is given in terms of a unit length scale nc/2,
which guarantees that at nc, ξnc = 0. In addition it follows that ηn = −2ξn . The two solutions
for ω have to be the same over all sites until nc is reached where both are zero. The spread
of the induced polar region thus critically depends on the magnitude of the polar impurity
dipole moment. A unique solution is obtained over the range nc, with small deviations for
the n = 0 solution, when g4 becomes site dependent as g̃(n)

4 = g4

2(n−nc)
2 . This result is entirely

self-consistent since the local double-well potential is steep and broad at n = 0 and becomes
smoother with increasing n to be pseudoharmonic for n = nc where g4 is infinitely large.

The above scenario corresponds to an intra-cluster distribution of potential barrier
heights [23] which we have used to calculate the frequency dependence of the dielectric
response within the approach of [24]. The result is shown in figure 2. Since in the numerical
calculation of the dielectric response the cluster size was limited to nc = 3, the frequency
dependence is stronger than observed experimentally but shows the characteristic behaviour
observed in relaxors.

From the above it is obvious that the smaller the displacement at n = 0, the less the local
mode is spread. The frequencies for this type of displacement patterns, using the definition
g = 2g2 + Cr g̃4C2, are, at site n = 0,

ω2
1 = 1

m1

[
4 f ′ + g

C

A

]
− 2 f ′

ncm1
(5)

ω2
2 = 2 f

m2

[
1 − 1

nc

1

2 + gC
f (2C−A)

]
. (6)
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At all other sites the two frequencies are

ω2
1 = 1

m1

[
4 f ′ + g

C

A

]
(7)

ω2
2 = 2 f

m2
. (8)

The two ILMs defined by equations (7) and (8) are different in character since mode 1 can lie
below the optic mode while mode 2 is higher in energy and is typically above the optic mode
spectrum. For this reason we concentrate in the following on the in-gap local mode (IGLM)
equation (7), since the one defined by equation (8) always decays into the zone boundary optic
mode frequency. Mode 1, however, has to be compared to the solutions obtained within the
self-consistent phonon approximation (SPA) [19] where the cubic term in the polarizability
coordinate is replaced like w3 = 3w〈w2〉T with 〈w〉2

T = ∑
q, j

h̄
mωq, j

W 2(q, j) coth h̄ωq, j

2kT . Here
W is the displacement amplitude within the SPA and ω are the corresponding momentum q
and branch j dependent frequencies. This method introduces a pseudoharmonic temperature-
dependent core–shell coupling gT = g2 + 3g4〈w〉2

T , which induces mode softening and a
lattice instability towards a polar state. Such an instability clearly limits the existence regime
of the IGLM, being confined to energies below the optic mode spectrum. Thus displacive type
ferroelectrics are unlikely candidates to observe IGLM formation.

In order to test the interplay and competition between lattice stability and IGLM formation,
we couple the displacement fields of both as ui = ui,IGLM + ui,lattice, w = wIGLM + wlattice [25],
which introduces a renormalization of the harmonic core–shell couplings like g̃T = gT + 3g̃4C2

and g2 = gT . The interesting effect arising from this coupling is that the soft lattice mode
is now stabilized by the breather amplitude whereas the breather mode becomes temperature
dependent. Since the existence of this mode is limited to frequencies below the zone centre
optic mode energy, it appears at a certain temperature when

ω2
1 = 1

m1

[
4 f ′ + gT

C

A

]
= ω2

TO(q = 0) = 1

µ

2 f g̃T

2 f + g̃T
.

When ω2
1 is equal to the zone boundary acoustic mode frequency, i.e.

1

m1

[
4 f ′ + gT

C

A

]
= ω2

TA

(
q = 2π

a

)
= 1

m1

[
4 f ′ +

2 f g̃T

2 f + g̃T

]
,

strong mode–mode coupling sets in which has the crucial consequence of anomalous softening
of the elastic constants. Typical temperature dependences of the three modes discussed above
are shown in figure 3.

As can be seen there, the previously soft optic mode is now stabilized and only slightly
temperature dependent; the same holds for the zone boundary acoustic mode, but a strong and
nonlinear temperature dependence of the breather mode is observed. As soon as this mode
splits off from the optic mode, an excess specific heat appears together with an entropy increase,
where both increase with decreasing temperature [26]. When the energy of the breather mode
reaches that of the acoustic mode, anomalies in the elastic constants appear which become more
pronounced with decreasing temperature since the crossing q-value gets smaller (figure 4).

The appearance of the breather mode has the additional effect, that the optic mode related
mean-square displacement deviates from linear in T behaviour at high temperatures when
the breather splits from it. Also a contribution from the IGLM appears then, which has an
anomalous temperature dependence since it is nearly T -independent at high temperatures,
while a strong T -dependence appears as soon as its energy is comparable to the acoustic
mode energy (figure 5). Correspondingly the onset of the IGLM will induce enhanced diffuse
scattering, which seems to be intrinsic to relaxor systems.
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Figure 3. Temperature dependence of the transverse optic zone centre mode ωTO (line with
squares), the transverse acoustic zone boundary mode ωTA (line with circles) and the breather
mode ω1 (equation (7)) (line with triangles). Note that ω1 depends nonlinearly on temperature.

0 10 20 30 40 50 60 7 800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
rit

ic
al

 q
-v

al
ue

 fo
r 

cr
os

si
ng

of
 th

e 
IL

M
 w

ith
 th

e 
ac

ou
st

ic
 m

od
e

Temperature [K]

Figure 4. Variation of the q-value, where acoustic mode and IGLM cross, with temperature.

A diffuse phase transition is expected in our model system, when the IGLM freezes out.
At this transition the breather patterns become static and a coexistence of locally distorted
areas with the ideal host lattice structure is predicted which above the transition is dynamically
present. In particular, the appearance of a macroscopic polarization is absent, since the optic
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Figure 5. Temperature dependence of the mean-square displacement of the optic mode (line with
circles; the dotted line is the linear in T extrapolation), the acoustic mode (line with squares) and
the IGLM (line with triangles; the dashed line is the linear in T extrapolation).

mode frequency remains finite. However, q = 0 optic mode softening is not excluded, even
though it is much less pronounced than in displacive ferroelectrics, but complete softening is
prevented due to the stabilizing effect of IGLM coupling.

The relation to the SRBRF model [1] is established by introducing average dipole moments
per cluster with characteristic lengths nc like

〈gT /g4〉(cluster)
average = 1

2nc

nc∑
n=0

gT /g̃(n)

4 = 1

2nc

nc∑
n=0

p(n),

which are the analogue of the Edwards–Anderson order parameter when N clusters are
considered. The total dipole moment per cluster i is then given by 2nc〈gT /g4〉(cluster)

average =
2nc〈pi 〉average, and using the definition Si = 3 p(ni)/nc

√
〈p2

i 〉average the closure relation∑N
i=1 S2

i = 3N is obtained in analogy to [1]. The reduction of temperature, which explicitly
enters the average cluster dipole moments through gT , has two effects:

(i) it leads to smaller cluster sizes which have the advantage of becoming mobile [17] and
favouring intercluster interactions;

(ii) the breather mode softens faster than the cluster size decreases and simultaneously
softens the elastic constants further because of mode–mode coupling which can lead
to a ferroelastic transition prior to the glass transition [27].

The above odd IGLM is not the only solution of the model. Even symmetry solutions also
exist which carry totally different character and will be discussed elsewhere. Also the chosen
displacement pattern is not unique but others exist, which will be discussed in forthcoming
work.

In conclusion, the IGLM discussed above is new as compared to former work on ILMs
which mostly concentrate on solutions above the phonon energies and are consequently



L320 Letter to the Editor

energetically less favourable. The reported nanoscale chemical cluster formation observed
in relaxors [2, 8, 23] suggests IGLM formation, and has been shown here to be due to
nonlinear electron–ion (charge-transfer) interactions. The potential barrier height distribution
is a self-consistent consequence of the IGLM formation and induces a frequency-dependent
distribution of the dielectric constants, which simultaneously adopt an unusual temperature
dependence. The model has two length scales, one related to the amplitude of the intra-
cluster polarizability coordinate, and the other defined by the thermal average of the SPA
displacement relevant to the long wavelength limit and following the centre of mass. The
coupling to the elastic degrees of freedom arises self-consistently in our modelling, and IGLM
formation is favoured in soft elastic systems. The freezing temperature is identified here as
the temperature at which the IGLM freezes out without causing macroscopic polarization, but
inducing a coexistence regime of locally distorted areas within the ideal lattice. The relation
to the SRBRF model becomes natural through identifying the average cluster polarization
with the Edwards–Anderson order parameter. Applications of the model to other than relaxor
ferroelectrics are clear since heterogeneity is vital to the IGLM formation and is an intrinsic
property of many complex oxides.

It is a pleasure to acknowledge many stimulating discussions with R Blinc and D Viehland.
Work at Los Alamos National Laboratory is supported by the USDoE.
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